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1. Introduction
The theory of CR-submanifolds of a Kaehler manifold (Q, q) was initiated by

Bejancu [5], [6], as a result of generalization of holomorphic (invariant) and totally
real (anti-invariant) submanifolds of Kaehler manifolds, where q is a non-degenerate
metric tensor. The classical theory of Riemannian submanifolds breaks down if the
induced metric tensor is degenerate because the tangent bundle and the submani-
fold’s normal bundle are not complementary i.e. there is an intersection that is not
zero. In order to solve this issue, K. L. Duggal and A. Bejancu [12] presented a few
novel techniques and explored lightlike submanifolds (also see [1], [12], [15], [20]).
Afterwards, research on generalized (CRL)subMs was initiated and studied in [13],
[14], [22]. In [11], Duggal and Bejancu studied the lightlike CR-hypersurfaces of
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indefinite Kaehler manifolds. Then, totally umbilical CR-submanifolds of Kaehler
manifolds and totally umbilical (CRL)subMs of indefinite Kaehler manifolds were
studied by Bejancu [7] and R. Kumar, M. Gogna, R. K. Nagaich [19]. In [21], R.
Kumar, J. Kaur, and R. K. Nagaich have researched CR-lightlike product subman-
ifolds, a unique class of (CRL)subMs.

Using the golden ratio ϕ, which is the real positive root of the structure poly-

nomial equation f(x) = x2 − x − 1 = 0 (thus, ϕ = (1+
√
5)

2
), C. E. Hretcanu and

M. Crasmareanu recently introduced and studied golden structures and their ge-
ometric properties on Riemannian manifolds [10]. Further, M. Ahmad and M. A.
Qayyoom [2], as well as C. E. Hretcanu [17], explored submanifolds in Riemannian
manifolds with golden structure. Later on, the lightlike submanifolds of a Golden
(SR)M was studied by N. Poyraz and E. Yasar in [23]. Shankar at.al [25] studied
screen semi-invariant ightlike submanifolds of a Golden semi-Riemannian manifold.

Many mathematicians and physicists have researched the concept of warped
product manifolds, which was first introduced by Bishop and O’Neill in [8]. Rie-
mannian product manifolds are generalized into these manifolds. For instance, a
surface of revolution is a warped product manifold. Warped product CR- sub-
manifolds were introduced by Chen in [9]. He demonstrated that the only warped
product CR-submanifold of the type Q = Q1 ×λ Q2 that exists is the CR-product,
in which Q1 is a fully real submanifold and Q2 is a holomorphic submanifold of Q.
As a result, he defined a warped product CR-submanifold of type Q = Q1 ×λ Q2

as a CR-warped product. Later on, warped product and CR warped product sub-
manifolds were explored in many studies (see [3], [4], [16], [18], [24], [26]).

In this paper, we examine some characteristics of CR-lightlike warped product
in Golden (SR)Ms. We also study some theorems on totally umbilical (CRL)subMs
of Golden (SR)Ms.

Abbreviation:
We have used following abbreviations in this paper-
(1) (SR)M : Semi-Riemannian manifold
(2) (CRL)subM : CR-lightlike submanifolds
(3) (WP ) : Warped product

2. Definition and Preliminaries

2.1. Golden Semi-Riemannian Manifold

Definition 2.1. Consider an n−dimensional manifold (Q, q) having a (1, 1) tensor
field ψ such that

ψ2 = ψ + I, (2.1)
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where I is the identity transformation on tangent bundle Γ(τQ). Then, the struc-
ture ψ is called a golden structure. If ψ is a self-adjoint operator with respect to
metric tensor q which is a symmetric non-degenerate (0, 2) tensor field on Q, i.e.

q(ψF,G) = q(F, ψG) (2.2)

for all F,G ∈ Γ(τQ), then the metric q is said to be ψ-compatible and (Q, q, ψ) is
called Golden (SR)M . From (2.1) and (2.2) we have

q(ψF, ψG) = q(F, ψG) + q(F,G)

for any F,G ∈ Γ(τQ).

Definition 2.2. Consider a Golden (SR)M (Q,ψ, q) and the Levi-Civita connec-
tion ∇ on Q with respect to q. Then Q is called indefinite if ψ is parallel with
respect to ∇, that is,

(∇Fψ)G = 0,∀ F,G ∈ Γ(τQ).

2.2. Lightlike Submanifolds
Consider a real (a+d)-dimentional (SR)M (Q, q) of index k where a, d ≥ 1, 1 ≤

k ≤ a+d−1 and a-dimensional submanifold (Q, q) of (Q, q) where q is the induced
metric of q on Q. (Q, q) is called a lightlike submanifold of (Q, q) if q is degenerate
on the tangent bundle τQ of Q, for details see [12]. τQ⊥ is a subspace of τxQ of
dimension d which is degenerate such that

τQ⊥ = ∪{µ ∈ τxQ : q(µ, ν) = 0,∀ ν ∈ τxQ, x ∈ Q}.

Here, both τxQ and τxQ
⊥ are degenerate orthogonal subspace but not complemen-

tary any more. Consequently, there is a subspace

RadτxQ = τxQ ∩ τxQ⊥.

We call it radical or null subspace. The submanifold Q is called r-lightlike sub-
manifold if RadτQ : x ∈ Q → RadτxQ defines a radical distribution on Q of rank
r > 0.

Consider a semi-Riemannian complementary distribution S(τQ) known as the
screen distribution of RadτQ in τQ. Here we have

τQ = S(τQ) ⊥ RadτQ,

and S(τQ⊥) is a vector subbundle that is complimentary to RadτQ in τQ⊥. Con-
sider two vector bundles tr(τQ) and ltr(τQ) that are complementary (but not
orthogonal) on τQ in τQ and RadτQ in S(τQ⊥)⊥, respectively. We get

tr(τQ) = S(τQ⊥) ⊥ ltr(τQ), (2.3)
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τQ = τQ⊕ tr(τQ) = {RadτQ⊕ ltr(τQ)} ⊥ S(τQ) ⊥ S(τQ⊥). (2.4)

Theorem 2.3. [12] Consider a lightlike submanifold (Q, q, S(τQ)) of a (SR)M
(Q, q). Then, in S(τQ⊥)⊥ there exists a complementary vector subbundle ltr(τQ)
of RadτQ and a basis of Γ(ltr(τQ)) | u comprising a smooth section {Wi}, where
u is a coordinate neighbourhood of Q, such that

q(Wi, ei) = 1, q(Wi,Wj) = 0,

where {ei} is a lightlike basis of Γ(RadτQ).
Consider the Levi-Civita connection ∇ on Q. Then, from the decomposition of

τQ, the Gauss and Weingarten equations are given by

∇FG = ∇FG+ b̄(F,G), ∀ F,G ∈ Γ(τQ), (2.5)

∇Fη = −AηF +∇⊥
Fη, ∀ F ∈ Γ(τQ), η ∈ Γ(tr(τQ)), (2.6)

where
{∇FG,AηF} ∈ Γ(τQ)

and
{b̄(F,G),∇⊥

Fη} ∈ Γ(tr(τQ)).

Here, ∇ is a linear connection on Q that is torsion-free, b̄ is second fundamental
form and Aη is a shape operator.

Let us consider the projection morphism of tr(τQ) on ltr(τQ) be L and of
tr(τQ) on S(τQ⊥) be S. Then, the Gauss and Weingarten equations give

∇FG = ∇FG+ b̄l(F,G) + b̄s(F,G),

∇Fη = −AηF + El
Fη + Es

Fη,

where we put
b̄l(F,G) = L(b̄(F,G)),

b̄s(F,G) = S(b̄(F,G)),

El
Fη = L(∇⊥

Fη),

Es
Fη = S(∇⊥

Fη).

In light of the fact that b̄l and b̄s are respectively, Γ(ltr(τQ))-valued and Γ(S(τQ⊥))-
valued, they are referred to as the lightlike second fundamental form and the screen
second fundamental form on Q.
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Definition 2.4. The screen distribution S(τQ) is said to be totally geodesic if
b̄s(F,G) = 0 for any F,G ∈ Γ(τQ).

3. CR-lightlike Submanifolds

Definition 3.1. Consider a real 2a-dimensional (SR)M (Q,ψ, q) and its subman-
ifold Q of dimension b. Then Q is said to be a (CRL)subM if :
(a) ψ(RadτQ) is distribution on Q such that

RadτQ ∩ ψ(RadτQ) = 0;

(b) there exist vector bundles S(τQ), S(τQ⊥), ltr(τQ), E0 and E
′
over Q such that

S(τQ) = {ψ(RadτQ)⊕ E
′} ⊥ E0;ψ(E0) = E0;ψ(E

′
) = L1 ⊥ L2,

where Γ(E0) is a non-degenerate distribution on Q, Γ(L1) and Γ(L2) are vector
subbundles of Γ(ltr(τQ)) and Γ(S(τQ⊥)) respectively, and let Q1 = ψ(L1) and
Q2 = ψ(L2).

We can decompose τQ as
τQ = E ⊕ E

′
,

where
E = RadτQ ⊥ ψ(RadτQ) ⊥ E0.

Now, let the projections on E and E
′
be P and O respectively. For any F ∈ Γ(τQ),

we write
F = PF +OF,

where PF ∈ E and OF ∈ E
′
. Applying ψ to above equation, we get

ψF = fF + wF,

where fF = ψPF and wF = ψOF . f is a (1, 1) tensor field and w is Γ(L1 ⊥ L2)-
valued 1-form on Q. Clearly, F ∈ Γ(E) if and only if wF = 0. Now, we set

ψK = mK + nK,

for any K ∈ Γ(tr(τQ)), where mK and nK are sections of τQ and tr(τQ) respec-
tively.

Lemma 3.2. Consider a (CRL)subM Q of a Golden (SR)M Q. Then, ∇FψF =
ψ∇FF for any F ∈ Γ(E0).
Proof. Let F,G ∈ Γ(E0). By using Gauss equation, we get

q(∇FψF,G) = q(∇FψF − b̄(F, ψF ), G)
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= q(∇FψF,G)

= q(ψ∇FF,G)

= q(∇FF, ψG)

= q(∇FF + b̄(F, F ), ψG)

= q(∇FF, ψG)

= q(ψ∇FF,G)

that is,
q(∇FψF − ψ∇FF,G) = 0

then, the result follows from the non-degeneracy of E0.

Lemma 3.1. Consider a (CRL)subM Q of a Golden (SR)M Q. Then,

(∇Ff)G = AwGF +Bb̄(F,G), (3.1)

(∇t
Fw)G = Cb̄(F,G)− b̄(F, fG), (3.2)

for any F,G ∈ Γ(τQ), where

(∇Ff)G = ∇FfG− f(∇FG),

(∇t
Fw)G = ∇t

FwG− w(∇FG).

Proof. For any F,G ∈ Γ(τQ), from equation (3.1), we have

ψG = fG+ wG

∇F (ψG) = ∇F (fG) +∇F (wG)

ψ∇FG = ∇FfG+∇FwG

Using equations (2.5) and (2.6), we get

ψ∇FG+ ψb̄(F,G) = ∇FfG+ b̄(F, fG)− AwGF +∇t
FwG

f(∇FG) +w(∇FG) +Bb̄(F,G) +Cb̄(F,G) = ∇FfG+ b̄(F, fG)−AwGF +∇t
FwG

Comparing tangential and normal parts, we get

∇FfG− f(∇FG) = AwGF +Bb̄(F,G),

∇t
FwG− w(∇FG) = Cb̄(F,G)− b̄(F, fG).
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Hence, we get the result.

Theorem 3.4. Consider a (CRL)subM Q of a Golden (SR)M Q. Then,
(i) The almost complex distribution E is integrable if and only if

b̄(F, ψG) = b̄(ψF,G), ∀ F,G ∈ Γ(E).

(ii) The totally real distribution E
′
is integrable if and only if

AψζG = AψGζ, ∀ ζ,G ∈ Γ(E
′
).

Proof. Since, Q is golden semi-Riemannian manifold, therefore

ψ∇FG = ∇FψG

Using equation (2.5), we have

ψ(∇FG+ b̄(F,G)) = ∇FψG+ b̄(F, ψG)

Interchange F and G in the above equation, we get

ψ(∇GF + b̄(G,F )) = ∇GψF + b̄(G,ψF )

As E is integrable, from above equations, we get

b̄(F, ψG) = b̄(ψF,G), ∀ F,G ∈ Γ(E).

Similarly, using equation (2.6), we have

ψ(−Aζµ+∇t
µζ) = −Aψζµ+∇t

µψζ

Interchange ζ and µ in the above equation, we get

ψ(−Aµζ +∇t
ζµ) = −Aψµζ +∇t

ζψµ

As E
′
is integrable, from above equations, we get

Aψζµ = Aψµζ, ∀ ζ, µ ∈ Γ(E
′
).

Example 3.5. Consider a Golden (SR)M Q = (R8, q, ψ) where q is of signature
(+,−,−,+,−,−,+,+) w.r.t. basis {∂µ1, ∂µ2, ∂µ3, ∂µ4, ∂µ5, ∂µ6, ∂µ7, ∂µ8}.
By setting ψ{∂µ1, ∂µ2, ∂µ3, ∂µ4, ∂µ5, ∂µ6, ∂µ7, ∂µ8}

= {ϕ∂µ1, ϕ∂µ2, ϕ∂µ3, ϕ∂µ4, ϕ∂µ5, ϕ∂µ6, ϕ∂µ7, ϕ∂µ8}
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where ϕ = (1+
√
5)

2
and ϕ = (1−

√
5)

2
are the roots of µ2 − µ − 1 = 0 and ψ is the

golden structure such that ψ
2
= ψ + I. Thus, Q is a Golden (SR)M .

Consider a submanifold Q of (R8
4, q, ψ) given by the equations

µ1 = y1 − y2 + ϕy3, µ2 = −y1 + y2 − ϕy3, µ3 = −y4 − ϕy5,

µ4 = −y4 + ϕy5, µ5 = y6, µ6 = −y6, µ7 = −y7, µ8 = y7

Here the tangent bundle τQ of Q is spanned by {ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7} where

ζ1 = ∂µ1 − ∂µ2,

ζ2 = −∂µ1 + ∂µ2,

ζ3 = ϕ∂µ1 − ϕ∂µ2,

ζ4 = −∂µ3 + ∂µ4,

ζ5 = ϕ∂µ3 + ϕ∂µ4,

ζ6 = ∂µ5 − ∂µ6,

ζ7 = −∂µ7 + ∂µ8.

We can see
q(ζ1, ζ1) = q(ζ1, ζ2) = ............q(ζ1, ζ7) = 0,

q(ζ2, ζ1) = q(ζ2, ζ2) = ............q(ζ2, ζ7) = 0.

So, we haveQ as 2-lightlike submanifold withRad(τQ) = span{ζ1, ζ2} and S(τQ) =
span{ζ3, ζ4, ζ5, ζ6, ζ7} and ψ(ζ1) = ζ3.
Also, ψ(ζ4) = ζ5 ∈ Γ(S(τQ)) implies that E0 = span{ζ4, ζ5}. Further, ltr(τQ) is
spanned by {η1, η2}, where

η1 =
1

2
{∂µ1 + ∂µ2}, η2 =

1

2
{−∂µ1 − ∂µ2}.

Now,
S(τQ⊥) = Span{ψ(ζ6) = {W1 = ϕ∂µ5 − ϕ∂µ6}, ψ(ζ6) = {W2 = −ϕ∂µ7 + ϕ∂µ8}}
and E ′ = span{ψη1, ψη2,W1,W2}.
Therefore, Q is a (CRL)subM of Golden (SR)M Q.

3.1. Totally Umbilical CR-lightlike Submanifolds

Definition 3.5. A lightlike submanifold (Q, q) of a Golden (SR)M (Q, q) is called
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totally umbilical in Q if there is a smooth transversal vector field H ∈ Γ(tr(τQ))
on Q, known as transversal curvature vector field of Q, such that ∀F,G ∈ Γ(τQ),

b̄(F,G) = Hq(F,G).

It is obvious that Q is a totally umbilical if and only if on each coordinate
neighbourhood u, H l ∈ Γ(ltr(τQ)) and Hs ∈ Γ(S(τQ⊥)) are present, such that

b̄l(F,G) = H lq(F,G),

b̄s(F,G) = Hsq(F,G).

Theorem 3.6. Consider a totally umbilical (CRL)subM Q of a Golden (SR)M
for which the screen distribution is totally geodesic. Then q(Hs, ψ

2
η) = 0 for each

η ∈ L2.
Proof. Let η ∈ L2 and F ∈ E0, then for a totally umbilical (CRL)subM and
totally geodesic screen distribution, we have

q(ψ∇FF, ψη) = q(∇FψF, ψη) = q(∇FψF + b̄s(F, ψF ), ψη) = q(∇FψF, ψη)

Using property of Golden (SR)M in above relation, we get

q(ψ∇FF, ψη) = q(∇FψF, ψη) = q(ψ∇FF, ψη)

= q(ψ∇FF, η) + q(∇FF, η) = 0 (3.3)

Also, we have
q(ψ∇FF, ψη) = q(∇FF, ψη) + q(∇FF, η)

= q(∇FF + b̄s(F, F ), ψη) + q(∇FF + b̄s(F, F ), η)

= q(∇FF, ψη) + q(∇FF, η) + q(b̄s(F, F ), ψη) + q(b̄s(F, F ), η)

As Q is totally umbilical i.e. b̄s(F,G) = q(F,G)Hs, so we get

q(ψ∇FF, ψη) = q(ψ∇FF, η) + q(∇FF, η) + q(q(F, F )Hs, ψη) + q(q(F, F )Hs, η)

= q(q(F, F )Hs, ψη) + q(q(F, F )Hs, η)

= q(F, F )q(Hs, ψη) + q(F, F )q(Hs, η)

From (3.3), we have

q(F, F )q(Hs, ψη) + q(F, F )q(Hs, η) = 0



190 South East Asian J. of Mathematics and Mathematical Sciences

q(F, F ){q(Hs, ψη) + q(Hs, η)} = 0

Due to non-degeneracy, we obtain

q(Hs, ψη) + q(Hs, η) = 0

q(Hs, ψη + η) = 0

q(Hs, (ψ + I)η) = 0

q(Hs, ψ
2
η) = 0

The result follows from the non-degeneracy of q.

4. CR-lightlike Warped Product

Definition 4.1. [24] Consider two Riemannian manifolds (Q1, q1) and (Q2, q2)
and a non-negative differentiable function λ on Q1. The (WP ) of Q1 and Q2 is
the Riemannian manifold

Q = Q1 ×λ Q2 = (Q1 ×Q2, q),

where q = q1 + λ2q2. Q1 is called the base of Q and Q2 the fibre.
For a (WP ) manifold Q1 ×λQ2, we denote by E1 and E2 the distributions defined
by the vectors tangent to the base and fibres respectively.

Lemma 4.2. Consider a (WP ) manifold Q = Q1 ×λ Q2. If F,G ∈ τ(Q1) and
X, Y ∈ τ(Q2), then

∇FG ∈ τ(Q1), (4.1)

∇FY = ∇Y F =
Fλ

λ
Y, (4.2)

∇XY = −q(X, Y )

λ
∇λ. (4.3)

Corollary 4.3. On a (WP ) manifold Q = Q1 ×λ Q2 one has
(i) Q1 is totally geodesic in Q,
(ii) Q2 is totally umbilical in Q.

Definition 4.4. A (CRL)subM Q of a Golden (SR)M Q is called a CR lightlike
product if both the distributions E and E

′
define totally geodesic foliations in Q.

Lemma 4.5. Consider a totally umbilical (CRL)subM Q of a Golden (SR)M Q.
Then, a totally geodesic foliation in Q is defined by the distribution E

′
.

Theorem 4.6. Consider a totally umbilical (CRL)subM Q of a Golden (SR)M Q.
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If Q = Q1 ×λ Q2 be a (WP ) (CRL)subM , then it is a CR lightlike product.
Proof. Consider the second fundamental form b̄

′
and the shape operator A

′
of Q2,

then we have

q(b̄
′
(F,G), ζ) = q(∇FG, ζ) = −q(G,∇F ζ) = −q(G,∇F ζ).

for F,G ∈ Γ(E) and ζ ∈ Γ(E
′
). Using (4.2), we obtain

q(b̄
′
(F,G), ζ) = −(ζInλ)q(F,G). (4.4)

Now, consider the second fundamental form ˆ̄b of Q2 in Q, then

ˆ̄b(F,G) = b̄
′
(F,G) + b̄s(F,G) + b̄l(F,G)

for any F,G tangent to Q2, then using (4.4), we obtain

q(ˆ̄b(F,G), ζ) = q(b̄
′
(F,G), ζ) = −(ζInλ)q(F,G). (4.5)

Since, Q2 is a holomorphic submanifold of Q, then we get

ˆ̄b(F, ψG) = ˆ̄b(ψF,G) = ψˆ̄b(F,G),

and

ˆ̄b(ψF, ψG) = ˆ̄b(ψ2F,G) = ˆ̄b(ψF,G) + ˆ̄b(F,G) = ψˆ̄b(F,G) + ˆ̄b(F,G)

ˆ̄b(F,G) = ˆ̄b(ψF, ψG)− ψˆ̄b(F,G)

therefore, we get

q(ˆ̄b(F,G), ζ) = q(ˆ̄b(ψF, ψG), ζ)− q(ψˆ̄b(F,G), ζ)

q(ˆ̄b(F,G), ζ) = −(ζInλ)q(F,G)− q(ψˆ̄b(F,G), ζ) (4.6)

Adding (4.5) and (4.6), we get

q(ψˆ̄b(F,G), ζ) = 0

q(ˆ̄b(F,G), ψζ) = 0

It follows that there aren’t any components of b̄(F,G) in L1 ⊥ L2 for any F,G ∈
Γ(E). This shows that a totally geodesic foliation in Q is defined by the distribution
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E. Hence, Q is a CR lightlike product.

Lemma 4.7. Consider a totally umbilical (CRL)subM Q of a Golden (SR)M Q,
then for a CR-lightlike (WP ) Q = Q1 ×λ Q2 in Q, we have
(i) ∇F ζ = −AwζF
(ii) q(b̄(ψF, ζ), ψζ1) = (FInλ)q(ζ, ψζ1) + (FInλ)q(ζ, ζ1)
for any F ∈ Γ(E) and ζ, ζ1 ∈ Γ(Q2) ⊂ Γ(E

′
).

Proof. (i) For Golden (SR)M Q, we have ∇ψ = 0, then

∇Fψζ = (∇FJ)ζ + ψ(∇F ζ)

for F ∈ Γ(E) and ζ ∈ Γ(Q2).
As Q is totally umbilical, therefore, we have

ψ(∇F ζ) = −AwζF +∇s
Fwζ

Taking inner product with ψG, where G ∈ Γ(E), we obtain

q(ψ(∇F ζ), ψG) = −q(AwζF, ψG) + q(∇s
Fwζ, ψG)

For Golden (SR)M , we get

q(∇F ζ, ψG) + q(∇F ζ,G) = −q(AwζF, ψG)

Using (4.2),
q(∇F ζ, ψG) = −q(AwζF, ψG)

q(∇F ζ + AwζF, ψG) = 0

Using non-degeneracy of q,
∇F ζ + AwζF = 0

∇F ζ = −AwζF

(ii) For any F ∈ Γ(E) and ζ, ζ1 ∈ Γ(Q2) ⊂ Γ(E
′
), we get from Gauss equation

q(b̄(ψF, ζ), ψζ1) = q(∇ζψF, ψζ1) = q(ψ∇ζF, ψζ1)

= q(∇ζF, ψζ1) + q(∇ζF, ζ1)

= (FInλ)q(ζ, ψζ1) + (FInλ)q(ζ, ζ1)

Theorem 4.8. Consider a locally CR lightlike (WP ) Q of a Golden (SR)M Q,
then

q((∇t
Fw)G,ψζ) = −G(Inλ){q(F, ψζ) + q(F, ζ)}
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for any F,G ∈ Γ(τQ) and ζ ∈ Γ(E
′
).

Proof. From definition 4.4, we know that totally geodesic foliation in Q is defined
by the distribution E, where Q is a CR-lightlike (WP ) of a Golden (SR)M Q.
Then, by using (3.3) for F,G ∈ Γ(E), we get

q((∇t
Fw)G,ψζ) = −q(b̄(F, fG), ψζ) = −q((∇FfG−∇FfG), ψζ)

= −q(∇FfG, ψζ) + q(∇FfG, ψζ)

= −q(∇FψG,ψζ) + q(∇FfG, ψζ)

= −q(ψ∇FG,ψζ) + q(f∇FG,ψζ)

= −{q(∇FG,ψζ) + q(∇FG, ζ)}+ q(f∇FG,ψζ)

= −q(∇FG,ψζ + ζ) + q(f∇FG,ψζ)

= −q(∇FG+ b̄(F,G), ψζ + ζ) + q(f∇FG,ψζ)

= −q(∇FG,ψζ)− q(∇FG, ζ) + q(f∇FG,ψζ) = 0

Now, let F ∈ Γ(E
′
), G ∈ Γ(E). By using (4.2) we have,

q((∇t
Fw)G,ψζ) = −q(b̄(F, fG), ψζ) = −q(∇FG,ψζ)− q(∇FG, ζ)

= −G(Inλ)q(F, ψζ)−G(Inλ)q(F, ζ)

= −G(Inλ){q(F, ψζ) + q(F, ζ)}
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