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1. Introduction

The theory of CR-submanifolds of a Kaehler manifold (Q, ¢) was initiated by
Bejancu [5], [6], as a result of generalization of holomorphic (invariant) and totally
real (anti-invariant) submanifolds of Kaehler manifolds, where ¢ is a non-degenerate
metric tensor. The classical theory of Riemannian submanifolds breaks down if the
induced metric tensor is degenerate because the tangent bundle and the submani-
fold’s normal bundle are not complementary i.e. there is an intersection that is not
zero. In order to solve this issue, K. L. Duggal and A. Bejancu [12] presented a few
novel techniques and explored lightlike submanifolds (also see [1], [12], [15], [20]).
Afterwards, research on generalized (C'RL)subyss was initiated and studied in [13],
[14], [22]. In [11], Duggal and Bejancu studied the lightlike CR-hypersurfaces of
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indefinite Kaehler manifolds. Then, totally umbilical CR-submanifolds of Kaehler
manifolds and totally umbilical (C'RL)subys of indefinite Kaehler manifolds were
studied by Bejancu [7] and R. Kumar, M. Gogna, R. K. Nagaich [19]. In [21], R.
Kumar, J. Kaur, and R. K. Nagaich have researched CR-lightlike product subman-
ifolds, a unique class of (C'RL)subys.

Using the golden ratio ¢, which is the real positive root of the structure poly-
nomial equation f(z) = 22 — 2 — 1 = 0 (thus, ¢ = (lgﬂ), C. E. Hretcanu and
M. Crasmareanu recently introduced and studied golden structures and their ge-
ometric properties on Riemannian manifolds [10]. Further, M. Ahmad and M. A.
Qayyoom [2], as well as C. E. Hretcanu [17], explored submanifolds in Riemannian
manifolds with golden structure. Later on, the lightlike submanifolds of a Golden
(SR)y was studied by N. Poyraz and E. Yasar in [23]. Shankar at.al [25] studied
screen semi-invariant ightlike submanifolds of a Golden semi-Riemannian manifold.

Many mathematicians and physicists have researched the concept of warped
product manifolds, which was first introduced by Bishop and O’Neill in [8]. Rie-
mannian product manifolds are generalized into these manifolds. For instance, a
surface of revolution is a warped product manifold. Warped product CR- sub-
manifolds were introduced by Chen in [9]. He demonstrated that the only warped
product CR-submanifold of the type () = Q1 x ) )2 that exists is the CR-product,
in which Q; is a fully real submanifold and Qs is a holomorphic submanifold of Q.
As a result, he defined a warped product CR-submanifold of type Q = Q1 X, Q2
as a CR~warped product. Later on, warped product and CR warped product sub-
manifolds were explored in many studies (see [3], [4], [16], [18], [24], [26]).

In this paper, we examine some characteristics of CR-lightlike warped product
in Golden (SR)s. We also study some theorems on totally umbilical (C'RL)subys
of Golden (SR)s.

Abbreviation:

We have used following abbreviations in this paper-
(1) (SR)m : Semi-Riemannian manifold

(2) (CRL)subys : CR-lightlike submanifolds

(3) (WP) : Warped product

2. Definition and Preliminaries
2.1. Golden Semi-Riemannian Manifold

Definition 2.1. Consider an n—dimensional manifold (Q, q) having a (1,1) tensor
field 1 such that

V=1 +1, (2.1)
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where I is the identity transformation on tangent bundle T'(7Q). Then, the struc-
ture v is called a golden structure. If 1 is a self-adjoint operator with respect to
metric tensor g which is a symmetric non-degenerate (0,2) tensor field on @, i.e.

q(VF, G) = q(F,¢G) (2.2)

for all F,G € T(7Q), then the metric q is said to be ¢-compatible and (Q, q,v) is
called Golden (SR)y. From (2.1) and (2.2) we have

qVFYG) = q(F.9G) +q(F,G)
for any F,G € T(7Q).
Definition 2.2. Consider a Golden (SR)y (Q,%,q) and the Levi-Civita connec-
tion V on_@ with respect to g. Then Q is called indefinite if 1 is parallel with
respect to V, that is, o B
(VR)G =0,V F,G € T'(7Q).

2.2. Lightlike Submanifolds

Consider a real (a+ d)-dimentional (SR)y (Q,7) of index k where a,d > 1,1 <
k < a+d—1 and a-dimensional submanifold (@, ¢) of (Q,q) where ¢ is the induced
metric of g on Q. (Q, q) is called a lightlike submanifold of (@, 7) if g is degenerate

on the tangent bundle 7Q of @, for details see [12]. 7Q" is a subspace of 7,Q of
dimension d which is degenerate such that

Q" =U{penQ :qp,v) =0,YvenQ,xeQ}

Here, both 7,Q and 7,Q+ are degenerate orthogonal subspace but not complemen-
tary any more. Consequently, there is a subspace

Radr,Q = 7,Q N 7,Q.

We call it radical or null subspace. The submanifold @) is called r-lightlike sub-
manifold if Rad7@ : x € () — Radr,Q defines a radical distribution on ) of rank
r > 0.

Consider a semi-Riemannian complementary distribution S(7Q) known as the
screen distribution of Rad7(@) in 7Q). Here we have

7Q = S(7Q) L RadrQ),

and S(7Q%1) is a vector subbundle that is complimentary to Radr@ in 7Q*. Con-
sider two vector bundles tr(7Q) and ltr(7@Q) that are complementary (but not
orthogonal) on 7Q) in 7Q) and Radr@Q in S(7Q1)*, respectively. We get

tr(rQ) = S(TQL) 1 ltr(r@Q), (2.3)
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7Q =1Q ® tr(1Q) = {RadtQ @ Itr(7Q)} L S(1Q) L S(rQ™h). (2.4)

Theorem 2.3. [12] Consider a lightlike submanifold (Q,q,S(TQ)) of a (SR)m
(Q,q). Then, in S(TQY)* there exists a complementary vector subbundle Itr(TQ)
of Radr@ and a basis of I'(ltr(7Q)) | u comprising a smooth section {W,}, where
u s a coordinate neighbourhood of (), such that

q(I/I/i>ei) = 176(‘%7‘%) = 07

where {e;} is a lightlike basis of I'( RadT(@).
_ Consider the Levi-Civita connection V on Q. Then, from the decomposition of
7@, the Gauss and Weingarten equations are given by

VrG =VeG+b(F,G),Y F,GecTl(rQ), (2.5)
Ven=—AF+ Vi, VFeT(rQ), neT(tr(rQ)), (2.6)
where
{VrG,A,F} € T(7Q)
and

{b(F.G), VEn} € T(tr(7Q)).

Here, V is a linear connection on () that is torsion-free, b is second fundamental
form and A, is a shape operator.

Let us consider the projection morphism of tr(7Q) on ltr(r7Q) be L and of
tr(7Q) on S(7Q*) be S. Then, the Gauss and Weingarten equations give

VrG =ViG+V(F,G)+ b (FQ),

Vin = —A,F + Ebn + B,

where we put B )
b (F,G) = L(b(F,Q)),

b (F,G) = S(b(F,Q)),
Epn = L(VEn),
Eyn = S(Vin).

In light of the fact that &' and b* are respectively, I'(itr(7Q))-valued and T'(S(7Q4))-
valued, they are referred to as the lightlike second fundamental form and the screen
second fundamental form on Q).
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Definition 2.4. The screen distribution S(7Q) is said to be totally geodesic if
b*(F,G) =0 for any F,G € I'(7Q).

3. CR-lightlike Submanifolds

Definition 3.1. Consider a real 2a-dimensional (SR)y (Q,4,q) and its subman-
ifold Q of dimension b. Then Q is said to be a (CRL)suby; if :
(a) Y(RadrQ) is distribution on @ such that

Radr@Q N(RadrQ) = 0;
(b) there exist vector bundles S(7Q), S(TQL), ltr(7Q), Eo and E' over Q such that
S(rQ) = {¥(RadrQ) & E'} L Eo;(Eo) = Bo; ¢(E') = Ly L Ly,

where T'(Ey) is a non-degenerate distribution on Q, I'(Ly) and ['(Ly) are vector
subbundles of T'(ltr(1Q)) and T(S(7Q1)) respectively, and let Q; = (Ly) and

Q2 = Y(La).
We can decompose 7() as
TQ=E®F,

where

E = RadrQ L ¢(RadrQ) L E,.

Now, let the projections on E and E be P and O respectively. For any F € T'(7Q),

we write
F=PF+ OF,

where PF € E and OF € E'. Applying ¢ to above equation, we get
VF = [F +wk,

where fF = ¢ PF and wF = ¢OF. fisa (1,1) tensor field and w is I'(Ly L Lo)-
valued 1-form on Q). Clearly, F' € I'(F) if and only if wF = 0. Now, we set

OK = mK + nk,
for any K € I'(tr(7Q)), where mK and nK are sections of 7¢) and tr(7@Q)) respec-
tively.

Lemma 3.2. Consider a (CRL)suby Q of a Golden (SR)u Q. Then, VY F =
WV F for any F € T'(Ey).
Proof. Let F,G € I'(Ey). By using Gauss equation, we get
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¢V F, G
Q(WFF, G
o(VrF,YG
= q¢(VeF +b(F, F

= q¢(VeF,0G
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~—
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that is, B B
q(VFQ/JF - ¢VFF, G) =0

then, the result follows from the non-degeneracy of Ej.

Lemma 3.1. Consider a (CRL)suby Q of a Golden (SR)y Q. Then,
(Vef)G = AucF + Bb(F,G), (3.1)

(VLw)G = Cb(F,G) — b(F, fQG), (3.2)
for any F,G € T'(7Q), where

(Vrf)G =VrfG — f(VFG),
(Vhw)G = VawG — w(VEeG).
Proof. For any F,G € T'(7Q), from equation (3.1), we have
VG = fG+wG
VF(wG) = VF(fG) + vp(wG)
YV ipG =VrfG + VewG
Using equations (2.5) and (2.6), we get
VVEG+Yb(F,G) = Ve fG + b(F, fG) — AucF + ViuwG
f(VEG) +w(VeG) + Bb(F,G) + Cb(F,G) = VpfG +b(F, fG) — AycF + ViwG
Comparing tangential and normal parts, we get
VrfG — f(VrG) = AygF + Bb(F,G),

ViwG — w(VeG) = Cb(F,G) — b(F, fG).
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Hence, we get the result.

Theorem 3.4. Consider a (CRL)suby Q of a Golden (SR)y Q. Then,
(i) The almost complex distribution E is integrable if and only if

b(F,¢G) = b(yF,G),¥Y F,G € T(E).
(i4) The totally real distribution E' is integrable if and only if
AycG = Ayc(, V(G eT(E).
Proof. Since, @ is golden semi-Riemannian manifold, therefore
VVpG = VG
Using equation (2.5), we have
V(VeG +b(F,Q)) = VepG + b(F, ¥G)
Interchange F' and G in the above equation, we get
V(VoF +b(G, F)) = Ve F + b(G,yF)
As F is integrable, from above equations, we get
b(F,¥G) =b(yF,G),Y F,G € T(E).
Similarly, using equation (2.6), we have
W(—=Acp+ V},0) = —Aycpn + Vi,0¢
Interchange ¢ and p in the above equation, we get
(= AuC+ Ven) = —Ayu + Vit
As E' is integrable, from above equations, we get
Ayep = Ay, V¢ peT(E).

Example 3.5. Consider a Golden (SR)y Q = (R%,q,%) where G is of signature
(+, = =+, — =+, +) w.r.t. basis {Op, O, Ops, Opia, Opis, O, Opir, Opis }-
By setting  {0u1, Opa, Oz, Opua, Opis, Opg, O, Opis}

= {p0Op1, POz, pOps, PO, POpus, Pps, POz, POps}
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(1+2\/g) and 5 = @ are the roots of 2 — p— 1 = 0 and 9 is the

golden structure such that EQ =+ 1. Thus, Q is a Golden (SR)y;.
Consider a submanifold @ of (R§,q,) given by the equations

where ¢ =

1 =Y1 — Y2+ Y3, fo = —Y1+ Y2 — QY3, [i3 = —Ya —5%,

fa = —Ys+ OYs, 15 = Ve, M6 = —Ye, M1 = —Y1, M8 = Y7
Here the tangent bundle 7Q) of @ is spanned by {(1, (s, (3, 4, G5, G, (7} where

G = 5#1 - 8#27

G2 = —0p1 + Opo,
G = ¢Op1 — Iz,
G4 = —0pz + Opu,
(s = POz + ¢y,
C6 = Ops — Oue,
¢7 = —0ur + Ous.

We can see

7(¢15¢1) = (¢, C2) = v q(¢1,¢7) =0,

q((% Cl) = G(CQ, CQ) = .. 6(@7 C7) = 0.

So, we have () as 2-lightlike submanifold with Rad(7Q) = span{(i, (2} and S(7Q) =
SpCLTL{Cg, C47 C57 CG? C7} and ¢(C1) = C3-

Also, () = ¢ € I'(S(7Q)) implies that Ey = span{(s, (5}. Further, itr(7Q) is
spanned by {n;, 2}, where

1 1
m = 5{6% + Opa}, m2 = 5{—0;“ — Oua}.

Now,

S(TQL) = Span@(@ = {W1 = ¢us — ¢pOus}, E(CB) ={Wy = —Eam +58ﬂ8}}
and E" = span{yn1, Yo, Wi, Wa}. _
Therefore, @ is a (CRL)suby; of Golden (SR)y Q.

3.1. Totally Umbilical CR-lightlike Submanifolds
Definition 3.5. A lightlike submanifold (Q,q) of a Golden (SR)y (Q,q) is called
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totally umbilical in Q if there is a smooth transversal vector field H € T'(tr(rQ))
on Q, known as transversal curvature vector field of Q, such that VF,G € T'(7Q),

b(F,G) = Hg(F,G).

It is obvious that @) is a totally umbilical if and only if on each coordinate
neighbourhood u, H' € T'(ltr(7Q)) and H* € T'(S(7Q")) are present, such that

V(F,G) = Hq(F,G),

V(F,G) = HG(F, Q).

Theorem 3.6. Consider a totally umbilical (CRL)suby @ of a Golden (SR)y

for which the screen distribution is totally geodesic. Then G(HS,@%) =0 for each
nec LQ.

Proof. Let n € Ly and F € Ej, then for a totally umbilical (CRL)suby, and
totally geodesic screen distribution, we have

GOV R F, ) = (V0 F, On) = (VP + b (F, O F), On) = 9(V i F, )
Using property of Golden (SR),; in above relation, we get
WV pF,¥n) = q(VeYF,gn) = gV pF,¥n)
=q(OVrF,n) +q(VrF.n) =0 (3-3)

Also, we have L - -

=4(VpF,dn) +q(VrF,n) +4(b°(F, F), ¥n) +q(0°(F, F),n)
As @ is totally umbilical i.e. b*(F,G) = q(F, G)H*®, so we get

GV rF,Yn) =WV eF,n) +4(VeF,n) +qq(F, F)H®,¥n) + q(q(F, F)H",n)

(@(F, F)H*,4n) +q(q(F, F)H*, 1)
(F, F)q(H®,¢n) +q(F, F)q(H*,n)

I
QW

From (3.3), we have

q(Fa F)G(HS@??) +6(F7 F)@(Hsaﬁ) =0
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a(F, F){g(H*, ¥n) +q(H*,n)} =0
Due to non-degeneracy, we obtain
Q(H*, ¥n) +q(H*,n) =0

q(H* ¢m+n) =0
q(H*, (b +1)n) =0
q(H*, &™) = 0
The result follows from the non-degeneracy of q.
4. CR-lightlike Warped Product

Definition 4.1. [24] Consider two Riemannian manifolds (Q1,q1) and (Qa,q2)
and a non-negative differentiable function A on Q1. The (WP) of Q1 and Qs is
the Riemannian manifold

Q=01 x\Q2= (Ql X Q2,9q),

where ¢ = q1 + N2qo. Q1 is called the base of Q and @y the fibre.
For a (W P) manifold @y X, @2, we denote by E; and Fj the distributions defined
by the vectors tangent to the base and fibres respectively.

Lemma 4.2. Consider a (W P) manifold Q = Q1 X\ Q2. If F,G € 7(Q1) and
X,Y € 7(Q3), then

VrG € 7(Q1), (4.1)
F
ViY = VyF = T)\Y, (4.2)
X,Y
vy = 4 5 Jo. (4.3)

Corollary 4.3. On a (W P) manifold QQ = Q1 X\ Q2 one has
(i) Q1 is totally geodesic in @,
(ii) Qs is totally umbilical in Q.

Definition 4.4. A (CRL)suby Q of a Golden (SR)y Q is called a CR lightlike
product if both the distributions E and E define totally geodesic foliations in Q.

Lemma 4.5. Consider a totally umbilical (CRL)suby; Q of a Golden (SR)y Q.
Then, a totally geodesic foliation in Q is defined by the distribution E .

Theorem 4.6. Consider a totally umbilical (CRL)suby @ of a Golden (SR)y Q.
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If Q = Q1 X\ Q2 be a (WP) (CRL)subyy, then it is a CR lightlike product.
Proof. Consider the second fundamental form b and the shape operator A" of Q,,
then we have

g(b'(F,G),¢) = q(VrG,{) = —4(G, V() = —q(G, V).
for F,G € I'(E) and ¢ € I'(E"). Using (4.2), we obtain
g(b'(F,G),¢) = —(¢In\)g(F, G). (4.4)

Now, consider the second fundamental form b of Qs in @, then

A

b(F,G) =0 (F,G) +b(F,G) + b'(F,G)

for any F,G tangent to (2, then using (4.4), we obtain

a(b(F,G).¢) = a(b' (F,G).¢) = ~(CIn\)q(F, ). (45)
Since, @, is a holomorphic submanifold of @, then we get
b(F,UG) = b(UF, G) = b(F,G),
and

bWF,YG) = b(Y*F,G) = by F,G) + b(F,G) = b(F,G) + b(F,G)

A

b(F,G) = b(yF,G) — Yb(F, G)

therefore, we get
4(b(F, G),¢) = q(b(¥ F, ¢:G).C) — gWb(F. G).C)

A

4(b(F,G),¢) = —((InA\)q(F, G) — q(b(F,G), () (4.6)
Adding (4.5) and (4.6), we get
g(Wb(F,G),¢) =0

g(b(F,G),:¢) = 0

It follows that there aren’t any components of b(F,G) in L; L L, for any F,G €
['(E). This shows that a totally geodesic foliation in ) is defined by the distribution
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E. Hence, @ is a CR lightlike product.

Lemma 4.7. Consider a totally umbilical (CRL)suby @ of a Golden (SR)n @,
then for a CR-lightlike (W P) Q = Q1 xx Q2 in Q, we have

(i) Vi§ = —AycF

(i1) AV F.).0C1) = (FInNq(C, ¥6) + (FInN)g(C.C1)

for any F € T'(F) and (,(; € T'(Q2) CT(E').

Proof. (i) For Golden (SR)y Q, we have Vi) = 0, then

Vel = (VpJ)¢ 4+ (Vi)

for F € I'(E) and ¢ € I'(Q2).
As (@ is totally umbilical, therefore, we have

W(VpC) = —AucF + Viw(
Taking inner product with )G, where G € I'(E), we obtain

q(V(VrQ), ¥G) = —=q(AucF, 9G) + q(Viw(, ¥G)
For Golden (SR)y, we get
((VrQ¥G) +q(Vr¢, G) = —q(AucF, Y G)
Using (4.2),
(Vi vG) = —q(AucF Y G)
A(VrC+ AucF 9pG) =0

Using non-degeneracy of ¢,
Vi¢+ AucEF =0

VFC == —chF
(#4) For any F € T'(E) and (,¢; € T(Qq) C T(E'), we get from Gauss equation

q(b(VF,C),9¢1) = (VU F,9¢1) = UV F ()

= q(VF, ) + q(VF, G)
= (FIn\)q(¢,¥¢1) + (FInA)q(¢, ¢1)

Theorem 4.8. Consider a locally CR lightlike (W P) Q of a Golden (SR)y @,
then

A(VEw)G, Q) = =GUnM{q(F,¥¢) + q(F.Q)}



CR-lightlike warped product in Golden semi-Riemannian Manifolds 193

for any F,G € T'(7Q) and ¢ € T(E').

Proof. From definition 4.4, we know that totally geodesic foliation in () is defined
by the distribution E, where @ is a CR-lightlike (W P) of a Golden (SR)y Q.
Then, by using (3.3) for F,G € I'(E), we get

7(Vew)G,v¢) = —q(b(F, fG),¢¢) = —q(VrfG — Vi fG),¢()

= —q(VrfG,¢C) + TV rfG,¢Q)
(VG 9C) + a(VrfG Q)
TV rG ) +q(fVrG, Q)

= —{q(VeG, ) +a(VrG, )} + (fVEG,4()

= —G(VrG, ¢+ Q) +9(fVrG,¥()
= —q(VrG + b(F,G),¥¢ + () +q(f VG, ()
= —q(VrG,¥(Q) —q(VrG, () +q(fVRrG,9¥¢) =0

Now, let F € I'(E'),G € I'(E). By using (4.2) we have,

(Viw)G,¥¢) = —q(b(F, fG),¥¢) = —q(VrG, ¥¢) — q(VFG, )

= —G(In\)q(F,¢¢) — G(InN\)q(F,C)
= —G(InN{q(F,¢¢) + q(F, O}
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